Custom Search

Tuesday, July 8, 2008

Ceiling-smoke-alarm.


Nuclear technology
It is a technology that involves the reactions of atomic nuclei. It has found applications from smoke detectors to nuclear reactors, and from gun sights to nuclear weapons. There is a great deal of public concern about its possible implications, and every application of nuclear technology is reviewed with care.
History

Discovery
In 1896, Henri Becquerel was investigating phosphorescence in uranium salts when he discovered a new phenomenon which came to be called radioactivity.[1] He, Pierre Curie and Marie Curie began investigating the phenomenon. In the process they isolated the element radium, which is highly radioactive. They discovered that radioactive materials produce intense, penetrating rays of several distinct sorts, which they called alpha rays, beta rays and gamma rays. Some of these kinds of radiation could pass through ordinary matter, and all of them could cause damage in large amounts - all the early researchers received various radiation burns, much like sunburn, and thought little of it.
The new phenomenon of radioactivity was seized upon by the manufacturers of quack medicine (as had the discoveries of electricity and magnetism, earlier), and any number of patent medicines and treatments involving radioactivity were put forward. Gradually it came to be realized that the radiation produced by radioactive decay was ionizing radiation, and that quantities too small to burn presented a severe long-term hazard. Many of the scientists working on radioactivity died of cancer as a result of their exposure. Radioactive patent medicines mostly disappeared, but other applications of radioactive materials persisted, such as the use of radium salts to produce glowing dials on meters.
As the atom came to be better understood, the nature of radioactivity became clearer; some atomic nuclei are unstable, and can decay releasing energy (in the form of: gamma rays, high-energy photons); (alpha particles, a pair of protons and a pair of neutrons; and beta particles, high-energy electrons).

No comments: